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1 Introduction

A programming language design must strike a balance between validatability, expressiveness,
and efficiency. Bridging the gap between domain concepts and the encoding of these concepts
in a programming language is one of the core challenges of software engineering. The
validatability of a language is a measure of the size of this gap. In a language with a high
validatability index, one can express intent with relatively little encoding, which makes it
straightforward to establish that a program ‘does the right thing’ Validatability decreases
with increasing encoding.

Validatability is often at odds with ezpressiveness, the coverage of a domain of computation
by a language. High coverage can typically be achieved by providing low level operations
that can be combined in many different ways. However, encoding domain concepts in low
level primitives increases the distance between intent and realization. Lack of (domain)
expressiveness results in an abundance of programming patterns to make up for the missing
non-expressible constructs [1]. These programming patterns are an obstacle to understanding
of programs by human readers [1], and thus reduce validatability.

Validatability is also at odds with efficiency. Realizing a high performance implementation
typically requires invasive changes to a basic expression of intent. A language that supports
separation of concerns between expression of intent and expression of performance require-
ments avoids such invasive changes. In general purpose languages efficient computations can
be encoded, but at the loss of validatability. In domain-specific languages, such as IncQuery
[12] for graph pattern matching, efficiency can be realized with limited encoding, but at the
expense of limiting expressiveness to a narrow domain.

The objective of our research group is to investigate the balance between validatability,
efficiency, and expressiveness in the design of (domain-specific) programming languages in
order to reduce the complexity of software systems.

The objective of my thesis work is to do a case study to investigate this balance in
the domain of information systems. Information systems are systems for the collection,
organization, storage, and communication of information. Information systems aim to
support operations, management and decision-making. In order to do this, the data in
information systems is filtered and processed to create new data.

Information systems are an interesting domain because both validatability and efficiency
are important information system properties. Validatability for information systems is useful
because its end users should be able to validate that their system does the right thing. End
users should be able to inspect information system specifications, just like they are able to
inspect the formulas in a spreadsheet, to validate them. Efficiency for information systems is
important because the amount of information and the amount of users tends to grow over
time, and the filtering and processing to create new data can depend on a lot of data.

So what is needed for such an information systems language? First, that this language can
specify the structure of the information to be collected, organized, stored, and communicated:
a data model. Second, that this language can specify filtering and processing of data to create
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entity Submission {

answer : String?

grade : Float? = if(childPass) childGrade else no value (default)
pass : Boolean = grade >= 5.5 <+ false

childGrade : Float? = avg(children.grade)

childPass : Boolean = conj(children.pass)

}

relation Submission.parent ? <—> % Submission.children

Figure 1 An aspect of a learning management system in which students solve assignments
expressed in IceDust. The student Submissions form a tree where leafs represent single questions
and non-leaves represent labs, or even a full course. Leaf submissions are graded by assigning a
grade to the grade attribute, while the grades of non-leaf submissions depend (indirectly) on the
grades of their child submissions. Note that students only receive a grade for a non-leaf submission
if all of its children pass, and a submission only passes when its grade is sufficient.

new data: the specification of derived data (or derived values for individual values). This
language should enable specification of data models and derived values with direct expression
of intent, so that the specifications are validatable. Moreover, the implementations generated
from these specifications should be efficient, and the language itself should be expressive
enough to enable specification of a wide range of data models and derived values.

2 Related Work

A variety of languages and libraries can be used to specify data models and derived values.
However, all of these have their limitations when used to specify information systems. Either
the specifications lack validatability, or the implementations lack efficiency, or the languages
themselves lack expressiveness. In this section we will describe the general limitations of
the object-oriented, functional reactive programming (FRP), and relational paradigms. In
general these paradigms are incomparable, but restricted to the domains of data models and
derived values they can be compared. As running example we use (an aspect of) a learning
management system (Figure 1).

Object-oriented languages and FRP libraries suffer from the lack of bidirectional associa-
tions. Data models often contain bidirectional associations, but references in object-oriented
languages are unidirectional, enforcing an encoding for bidirectional associations [6]. On
the other hand, relational databases enable bidirectional relations through foreign keys, but
navigating these relations is through verbose queries, which hampers validatability [6].

Derived value computations often include optional or multiple values. Object-oriented
languages and FRP libraries encode the cardinality of values through lists and null (or None)
values. They encode the operations on these cardinalities of values with maps, flatMaps
and null-checks (Figure 3). Conversely, relational databases always work with multiple
rows. However, columns can still contain null values, and view definitions might not be
complete. For example, in SQL one must deal with null values and missing rows by means
of null-checks and unions (Figure 2).

Object-oriented programming languages can express derived values through getters
containing code that calculates a derived value. These getters are a direct expression of
intent but do not provide efficiency as the derived value is recalculated each time it is read.
Efficiency can be gained by encoding patterns such as caches, but this reduces validatability.

Functional reactive programming aims to limit the encoding patterns for caching and
incremental cache maintenance by providing macros (or functions) that encapsulate caching
behavior [8, 11]. However, the use of these macros still is an encoding pattern (see Figure 3).
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CREATE TABLE submissionZ2(
id int (10) NOT NULL AUTO_INCREMENT, PRIMARY KEY (id),
parent int (10), answer varchar (20), manualGrade float (4,2));

CREATE VIEW submissionZchildgradeChildpass AS
SELECT parent AS id, AVG(grade) AS childGrade, BIT_AND (pass) AS childPass
FROM submission3full GROUP BY parent
UNION SELECT id, 0.0 AS childGrade, TRUE AS childPass
FROM submission2 WHERE NOT EXISTS (
SELECT NULL FROM submission3full WHERE submission3full.parent = submissionZ2.id);

CREATE VIEW submission2grade AS
SELECT id, IF ((manualGrade IS NOT NULL), manualGrade,
IF (childPass, childGrade, NULL)) AS grade
FROM submission2 NATURAL JOIN submission2childgradeChildpass;

CREATE VIEW submissionZpass AS
SELECT id, IF((grade IS NOT NULL), (grade >= 5.5), 0) AS pass
FROM submission2grade;

CREATE VIEW submission2full AS

SELECT id, parent, answer, manualGrade, childGrade, childPass, grade, pass
FROM submission2 NATURAL JOIN submissionZ2childgradeChildpass

NATURAL JOIN submissionZgrade NATURAL JOIN submissionZpass;

Figure 2 Learning management system grade calculation with MySQL views. The definition is
non-recursive as recursive views are not supported in MySQL. Derived values that depend on each
other require separate views. As joins can omit rows unions with default values are required.

class Submission {

val children : VarSynt [List [Submission]] = Var (Nil)

val answer : VarSynt [String] = Var("")

val manualGrade: VarSynt [Option[Double]] = Var (None)

val childGrade: DependentSignal [Option[Double]] = Signal {
val grades = children().flatMap( _.grade() )

if (grades.nonEmpty) Some (grades.sum / grades.length) else None

}

val childPass: DependentSignal [Boolean] = Signal ({
children () .map( _.pass() ).conjunction

}

val grade: DependentSignal[Option[Double]] = Signal {

manualGrade () match {
case Some (g) => Some (g)

case None => if (childPass()) childGrade () else None
}
}
val pass: DependentSignal [Boolean] = Signal {
grade () .exists( _ >= 5.5 )

Figure 3 Learning management system with grade calculation with REScala signal macros. The
order of the vals is declare before read, except for indirect reads (such as the grades of children).

This encoding pattern also changes the types, and the interface. Reading from a plain
Scala value is foo, while in Scala.React and REScala this is foo.getValue and foo.get
respectively. Writing to a plain Scala variable is foo = x, while in Scala.React and REScala
this is foo() = x. This makes switching calculation strategies hard, the efficiency concern
and the derived value specification are not properly separated.
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By contrast, relational engines can allow easy switching between calculate-on-read and
calculate-on-write as they support both materialized and non-materialized views for calculat-
ing derived values [3, 4]. Other relational engines (such as i3QL [10] and IncQuery [12]) only
provide materialized views, with the rationale that in every intended load scenario this will
be faster. However, relational engines only provide limited expressiveness for recursion (in
order to guarantee termination). Moreover, specifying derived values through views requires
encoding, especially when the derived values depend on each other, as they need to be in
separate view definitions (Figure 2).

3 Data Modeling and Derived Value Computation in IceDust

The objective of my thesis work is to do a case study to investigate the balance validatability,
efficiency, and expressiveness in the domain of information systems: IceDust. IceDust eases
validation of information system specifications by enabling direct expression of intent for data
models and derived values through bidirectional relations and native multiplicities [7]. In
IceDust the efficiency concern is separated from the derived value specification by providing
different calculation strategies as compiler options. IceDust provides efficiency in a variety of
load scenarios through three different calculation strategies.

Bidirectional relations In Object-oriented languages bidirectional associations have to be
encoded in multiple unidirectional references (which have to be kept consistent). SQL
supports bidirectional relations by foreign keys, but encodes navigation with verbose joins.
To avoid encoding, IceDust supports bidirectional relations:

relation Submission.parent ? <—> % Submission.children

Concise navigation is supported with member-access navigation in both directions:

mySubmission.children
mySubmission.parent

Native Multiplicities Object-oriented languages encode the operations on optional and
multiple of values with maps and flatMaps and null-(or None)checks (Figure 3). In relational
languages such as MySQL these are encoded with null-checks and unions (Figure 2). To
avoid these encodings, IceDust adopts native multiplicities [6]. IceDust lifts all its operators,
avoiding encodings. Accessing an attribute, for example, is simply a projection:

children.grade

The type system knows how many values an expression returns (multiplicity denoted by ~,
where * is [0,n), + is [1,n), 7 is [0,1], and 1 is [1,1]):

mySubmission // : Submission ~ 1
mySubmission.children // : Submission ~ %
mySubmission.children.grade // : Float ~
avg (mySubmission.children.grade) // : Float ~ 7

Derived Values Derived value attributes provide a calculation strategy agnostic way of
specifying derived values:

entity Submission { childGrade : Float? = avg(children.grade) }
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The calculate-on-read strategy provides performance in load scenarios with many writes and
little reads. The calculate-on-write strategy provides performance in load scenarios with many
reads and little writes. The calculate-eventually strategy provides maximum performance
in many load scenarios but does not provide consistency. All of these strategies support
concurrent interactions (through a relational database), which is desirable in information
system load scenarios.

4 Future Work

While IceDust eases validation of information system specifications and provides efficiency in a
variety of load scenarios, it can be improved. IceDust, in its current form, lacks expressiveness
(for example relational joins), and could be efficient in more load scenarios by incorporating
more calculation strategies and the composition of calculation strategies.

We want to do a study (survey paper) comparing incremental computation languages
and libraries. This study should start with a set of information system use cases for which
validatable specification and efficient implementation is desired. Second, it should study a
set of state of the art incremental computation tools (languages, engines, and frameworks).
For each tool it should be assessed what information systems can be expressed in it, and
what mechanics it employs for incremental computation. We hope that the insights from this
study will guide what language constructs to add to IceDust to increase its expressiveness.

Next, we would like to extend IceDust in order to increase its expressiveness. This requires
adding new mechanics to handle the extra expressiveness efficiently. Adding a relational join
operator (and an incremental implementation) is a possibility, as this would allow for derived
relations (as opposed to only derived attribute values).

We would also like to extend IceDust with composition of calculation strategies. Com-
position of calculation strategies increases the number of load scenarios where efficient
performance can be provided. Composition of calculation strategies requires changes to
the language: it should be specified which derived values should be calculated with which
strategy. A static analysis should only admit sound compositions. Experiments should
verify that the composition of calculation strategies indeed improves efficiency in certain
load scenarios. These benchmarks should illustrate performance trends and trade-offs when
switching calculation strategies. It is not our goal to be faster than any competitor for
any specific calculation strategy in any specific scenario, rather our goal is to provide easy
switching of strategies to provide relatively fast performance in many scenarios.

5 Validation Strategies

We would like to validate IceDust (as in research validation) by applying it in a variety of
information systems. The information systems that we would like specify in IceDust are: a
learning management system with grade calculation (as mentioned in this paper), statistics
from edit scenarios, and duration predictions for student assignments; a finance system with
transactions and pivot tables; and a scientific publications system with citation graphs with
non-trivial data such as author aliasing. The load scenarios that we are going to use for
efficiency validation are going to be recorded from the real systems in use. This should
validate the validatability of the specifications, the efficiency of the implementations, and
IceDust’s expressiveness.

We would also like to validate IceDust by comparing it with other state of the art
systems. The state of the art systems we would like to compare with are LogiQL [2], Nominal
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Adapton [5], Scala.React [8], Reactive Extensions [9], i3QL [10], REScala [11], and IncQuery
[12]. Validatability, efficiency, and expressiveness in the domain of data models and derived
value calculations can all be compared. Validatability can be measured by the number of
concepts a programmer has to understand in order to understand the code. Less concepts
to understand means better validatability (analogous with encodings [1]). To measure the
number of concepts a programmer has to understand we plan to digest the hard parts of the
information systems mentioned above (in the same way the running example of this paper is
the hard part of a larger system), and express these tiny, hard parts in all the state-of-the-art
systems. Efficiency can be compared by running benchmarks. We will measure throughput
(requests per second) and latency under peak load. The load scenarios for these benchmarks
will be digested from the recorded load scenarios of the real systems. Expressiveness can be
compared by articulating use cases which can be expressed in one system, but not in another.

With both validation strategies the threat to validity is that information systems and
their load scenarios are not representative for other information systems and their load
scenarios. We try to limit this threat by covering a variety of systems and a variety of load
scenarios taken from real world applications.
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