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1 Introduction
Derived values are values calculated from base values. They
can be expressed in object-oriented languages by means of get-
ters calculating the derived value, and in relational or logic
databases by means of (materialized) views. However, switch-
ing to a different calculation strategy (for example caching) in
object-oriented programming requires invasive code changes,
and the databases limit expressiveness by disallowing recur-
sive aggregation.

IceDust is a data modeling language for expressing derived
attribute values without committing to a calculation strat-
egy. IceDust provides four strategies for calculating derived
values in persistent object graphs: on-demand, incremental,
eventual, and on-demand incremental. The first three were
introduced at ECOOP last year [2]. The new strategy is in-
spired by Adapton [1]: it flags caches dirty transitively on
writes, and only recomputes caches on reads (Figure 1). At
this ECOOP we present IceDust 2 [3], which enables cal-
culation strategy composition. For every field with a de-
rived value a strategy can be selected. The IceDust 2 type
system restricts composition to only sound composition, en-
suring derived values are up to date when read (except for
eventual calculation). Moreover, we have extended IceDust
with inline attributes. The expressions of these attributes
are inlined on their use site (and thus cannot be recursive).
This allows us to control the granularity of caching in IceDust.

The four strategies and inlining provide us with many pos-
sible options for calculating derived values in IceDust applica-
tions. In this extended abstract we benchmark various options
for a single application under peak load.

2 Application, architecture, and load
We use IceDust for building web applications. We bench-
mark a learning management system in which students receive
grades for programming assignments. Student final grades for
a course are expressed as derived values over the individual
programming grades, and the course statistics are expressed
as derived values over the student final grades.

This web application has a traditional architecture. Data
is stored in a relational database, HTTP requests are handled
concurrently, and every request has its own object-relational
mapping. The database (MySQL) uses optimistic locking, so
concurrent overlapping edits can fail.

The learning management system is under peak load during
exams. Around 300 students submit Scala programs which
are automatically graded (on another server), and the teacher
can see live grade statistics during the exam.

w rcalc

w calc r

w

calc

r

On-demand

Incremental

Eventual

call

return

flag dirty

w write base value

r read derived value

calc calculate derived value

rcalc

r

r

w dirtyOn-d. Incr. rcalc r

dirty flag caches dirty

Figure 1: Thread activation diagrams of calculation strategies

entity Node1 {
avgValue : Float? =

avg(children.avgValue) (on−demand)
}
relation Node1.children * <−> ? Node2.parent
entity Node2 {
avgValue : Float? =

avg(children.avgValue) (default) (incremental)
}
relation Node2.children * <−> ? Node2.parent2

Figure 2: Synthetic benchmark program

3 Benchmarks

The essence of the grade calculation in our learning manage-
ment system is a tree-like structure with aggregations on every
level. So, first we do a micro-benchmark with recursive ag-
gregation under strategy composition. We create a tree with
depth 5 and a branching factor of 10. At the leaf nodes we
assign values, and at all non-leaf nodes we compute the aver-
age of the children. To benchmark strategy composition we
use a different strategy at the top node, Node1, than for the
other nodes, Node2s (Figure 2).

During the benchmark we vary the number of subsequent
reads and writes and measure how many HTTP request we
can service per second. The benchmarks consist of 30 seconds
start up, and 10 times 10 seconds of load. The figures show
the average of the 10 runs, with bars showing the slowest and
fastest run.

Figure 3 shows the results of our micro benchmark. Strate-
gies on-demand, incremental, and eventual perform identi-
cal to our previous work [2]: on-demand performs horrible on
reads, incremental performs horrible on concurrent writes,
and eventual performs well under any load. The new strat-
egy on-demand incremental outperforms both on-demand
and incremental on most workloads. This is because it
has the same concurrent conflicts as incremental, but it has
less objects to load from database each request. Interestingly
enough on-demand incremental does not perform well when
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Figure 3: Throughput for micro benchmark with 11111 nodes

used with on-demand for the top node (green). A read of
the top node forces updates of the cache of its 10 children,
which creates a larger transaction footprint, and thus more
conflicts. If we use incremental for the tree and on-demand
incremental (purple), or on-demand (blue) on top, we do get
better performance. Especially blue performs well, as concur-
rency conflicts are minimized.

Next, we check whether these performance characteristics
carry over to our full learning management system, and an-
alyze the influence of changing the caching granularity. The
IceDust specification of the systems derived values is 300+
lines, 14 entities, and 68 derived values. Out of these 68
derived values, 61 can be inline, while 7 are recursive and
cannot be inlined. The data set is 200 students, a total of 300
assignments in the course (including non-graded practise as-
signments), and 13000 student submissions. During the exam
700 Scala programming submissions were edited. We bench-
marked writing to these 700 submissions, while reading only
the exam average grade (not the top node of the assignment
tree, which would be the average course grade).

Figure 4 shows the benchmark results. In general the per-
formance of the various strategies in the micro benchmark
carries over to the full program: on-demand performs only
on writes, incremental performs only on reads, on-demand
incremental performs well on only reads and writes but not
on mixed workloads, and the composition of incremental
and on-demand (blue) performs quite well on any workload.
(Note that the aggregation for course statistics is now over 200
students, rather than 10 children, explaining the lower perfor-
mance on reads for incremental + on-demand.) It is clearly
visible that inlining has a negative effect on performance (for
all non-eventual strategies). This can be explained by the
fact that inlining makes the granularity of caching larger,
which in turn means that each HTTP request reads many
more (possibly written to) fields, increasing concurrency con-
flicts. This is a classic trade-off between disk (and memory)
space and performance.

4 Discussion

We do not expect these results to carry over to other appli-
cations, architectures, or load patterns. We have observed
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Figure 4: Throughput for full program with real data

two limiting factors in the performance of IceDust-based web
applications: (1) the number of objects that has to be loaded
from database into memory per request, and (2) the footprint
of concurrent transactions (write-write conflicts or read-write
conflicts). In both benchmarks all values get (recursively)
aggregated into a single derived value, but if derived values
in applications depend on less values the number of conflicts
is drastically reduced [2]. If the architecture does not sup-
port concurrency (or the load is not concurrent) conflicts will
not happen at all. Moreover, if the application architecture
does not include object-relational mapping but has all data
in memory, then number of objects read and written does not
matter.

IceDust has become a toolbox of building blocks, to build
incremental applications. Which building blocks to use de-
pends on the derived values in the application, the applica-
tion architecture, and the load pattern on the application. In
future work we would like to benchmark various applications,
architectures, and load patterns to learn more about which
strategies (and compositions) work in which scenarios.
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