
MODULARITY: U:
Relations in Role-Based Data

Modeling, Navigation and Updates

Daco C. Harkes
Delft University of Technology

d.c.harkes@tudelft.nl

Abstract
Object-oriented programming languages support concise naviga-
tion of relations represented by references. However, relations are
not first-class citizens and bidirectional navigation is not supported.
The relational paradigm provides first-class relations, but with bidi-
rectional navigation through verbose queries. We present a system-
atic analysis of approaches to modeling and navigating relations.
By unifying and generalizing the features of these approaches, we
developed the design of a data modeling language that features
first-class relations, n-ary relations, native multiplicities, bidirec-
tional relations and concise navigation. This paper is a shortened
version of work published in [9]. We extend our previous work by
ongoing work on multiplicity-safe update operations.

1. Introduction
Object-Oriented programming languages model data with object
graphs. Navigation through object graphs is simple; following ref-
erences leads to related objects. But references in object graphs
are one-directional and cannot be navigated backwards. Bidirec-
tional navigation can be obtained by storing references on both
sides of relations between objects. But keeping such redundant ref-
erences consistent requires bookkeeping code. By contrast, rela-
tional databases support bidirectional navigation. Foreign keys can
be used in queries to navigate both ways. There is no need for re-
dundant references. Queries are however not as concise as naviga-
tion through references.

Proposals for Object-Oriented languages with first-class rela-
tions provide bidirectional navigation [3]. These languages remove
the need for manually keeping references consistent but navigation
is done through querying, which is still verbose. There are model-
ing techniques that are yet different from Object-Oriented and re-
lational modeling: Object-Role modeling [7], Entity-Relationship
modeling [5], UML [12] and undirected graphs.

In this paper, we present a systematic analysis of the design
space of relations in data modeling and present a new data mod-
eling language that unifies and generalizes relations. In particular,
our contributions are:

• We extrapolate Steimann’s approach [20] to model multiplic-
ities using annotations in Java to native multiplicities that are
integrated into the type system (Section 2).

• A systematic analysis of approaches to modeling relations (Sec-
tion 3).

• A new relational data modeling language featuring native multi-
plicities, bidirectional navigation, n-ary relations, first-class re-
lations, and concise navigation expressions based on the analy-
sis (Section 4).

class Student { }

class Course {
@any(ArrayList.class) Student student;

void addStud(@any(ArrayList.class) Student s){
this.student += s;

}
}

Figure 1. Multiplicity annotations in Java

• An overview of approaches for multiplicity-safe data updates
(Section 5).

A formal definition of the type system and operational seman-
tics of this language is available in the extended version [9].

2. Native Multiplicities
The first thing we need to fix to get relations right is the treatment
of their cardinality or multiplicity. Encoding of to-many relations
as associations to collections results in a discontinuity in program-
ming style [20]:

• Navigating one-to-one and many-to-one relations produces sin-
gleton values, while navigating through one-to-many and many-
to-many relations produces collections of values. Thus, the
caller has to unwrap the result before using it, for example
by using an iterator.

• The caller has to deal with different sub-type substitution
conditions. Suppose Student extends Person. Assigning an
Student to a Person is fine (to-one), but trying to assign
Set<Student> to Set<Person> will trigger a type error (to-
many).

• The call semantics is call-by-value for to-one and call-by-
reference for to-many. Collection objects are passed by refer-
ence, so that they can be modified by the callee. Call-by-value
semantics for collections requires immutable collections.

Multiplicity Annotations To address these issues, Steimann pro-
poses an extension of regular Object-Oriented programming with
multiplicities [20]. He presents an extension of Java with multi-
plicity. Expressions of a singleton value type can return an arbi-
trary number of objects of this type. Figure 1 illustrates the ap-
proach with a small example in which a Course has an association
to Student. Through the @any annotation the association is de-
clared to be to-many instead of using a collection type.

1 2015/8/31

class Student {
String! name;
Course* courses;
int! numCourses(){ return count(this.courses); }

}
class Course {
Student* students;
void addStudent(Student+ s){
this.students += s;

}
int? avgNumCourses(){

return avg(this.students.numCourses());
}

}

Figure 2. Native multiplicities in Java

Native Multiplicities We have extrapolated Steimann’s annota-
tions based approach and integrated multiplicities into the type sys-
tem to arrive at native multiplicities. Type expressions use one of
the following four multiplicity operators (similar to regular expres-
sions) to denote the possible range of values:

• t? is [0, 1] an optional value of type t
• t! is [1, 1] a required value of type t
• t* is [0, n) zero or more values of type t
• t+ is [1, n) one or more values of type t

The ! can be omitted as [1, 1] is the default multiplicity.
As a sketch, Figure 2 illustrates native multiplicities in an ex-

tension of Java. We have not formalized an extension of Java, but
rather integrated native multiplicities in our relational data model-
ing language. We formalize a type system for that language includ-
ing multiplicities. The type system ensures that the actual number
of values at run-time is always inside the specified range. For ex-
ample, assigning an optional string (a value of type String?) to
a student.name will trigger a type error: multiplicity error: [1, 1]
expected, [0, 1] given. Our language also supports expected multi-
plicities for function arguments. The built-in function count han-
dles any multiplicity and any type and it returns exactly one integer
with the number of values passed. The built-in function avg also
handles [0, n) values and the argument type must be numeric. The
return multiplicity of avg depends on its input multiplicity. If a
programmer supplies [0, n) as input the return multiplicity will be
[0, 1]. The average of no values does not exist, so no value will
be returned in that case. If the programmer supplies [1, n) as input
the return multiplicity is [1, 1]. With at least one value there is al-
ways an average computable. We use this model of multiplicities,
reasoning over ranges, in the type system of our language.

3. Design Space for Role-Based Relations
There are several proposals in the literature for extending data mod-
eling to better support data modeling with relations. This section
presents a systematic analysis of the design space of relations in
data modeling taking in into account these proposals. Figure 3 sum-
marizes the complete design space in tabular form emphasizing its
regularities. The design space consist of two dimensions: the mod-
eling paradigm (columns) and the relation models (rows). For both
dimensions we describe the features supported for relations. From
this analysis a new data modeling language emerges which unifies
and generalizes the various approaches to modeling relations.

The running example data model defines Students who are en-
rolled in Courses, sometimes via a first-class Enrollment rela-
tion. In expressions we use Student ‘bob’ and Course ‘math’.

OO Rel. ORM Graph Fc. N-ary
Edge WebDSL
Tuple RelJ X
Object Rumer our work X X
Concise X X
Bidir. X X X

Figure 3. Design Space with on the side and bottom the supported
features: First-class citizenship (fc), N-ary relations, Concise navi-
gation and bidirectional navigation (bidir).

3.1 Columns: Four Modeling Paradigms
The four columns in the design space represent four modeling
paradigms.

Object-Oriented Relations between objects are defined through
reference valued attributes, which can be navigated in one direc-
tion only. The name of the relation is the name of the attribute in
the source class. The relation is unknown to the target class. A rela-
tion can also be modeled by, redundantly, maintaining a reference
attribute on the other side of the relation, as well, allowing bidi-
rectional navigation. However, this requires code for keeping the
two sides of the relation consistent. We do not cover models with
redundant information in our design-space analysis, as this is an
undesirable property.

Relational In a relational database schema references are ex-
pressed as foreign keys; an identifier corresponds to a memory ad-
dress and a foreign key to a reference into memory. An important
difference is that these references can be navigated in two direc-
tions through queries in a query language (SQL). ER and UML
diagrams are also located in this column, but they only provide
schema definitions, not queries. Because queries are verbose we
introduce our own notation for forward and backward navigation
through references. For forward navigation we use the the normal
field access notation. For backward navigation from an object o we
need to find all the objects of type T that refer to o through refer-
ences r, which is expressed by o<-(T.r). For example, to find the
students enrolled in a course math we use the navigation expression
math<-(Student.courses).

Object-Role Modeling A distinguishing feature of ORM [7] is
that associations between objects have a different name on both
sides. This conceptually solves the problem of not being able to
refer to a reference backwards. Similarly, inverse properties in
WebDSL [21] tie two fields in different classes together as inverses.

Graph databases In contrast to the directed edges in the previous
three paradigms, graph databases feature undirected edges. In this
model the edge names are defined in both source and target names-
paces. As with the ORM paradigm there is always a name available
in the namespace of participating objects, but in this case this name
is identical for both sides. There is one disadvantage of this model:
modeling asymmetric same type relations is nontrivial. Consider a
TreeNode with a parent and children. If a node p has a parent edge
to another node q, then q also has a parent edge to p. This can be
solved through indirection, but that is not particularly elegant. So
we do not consider undirected graphs further on.

3.2 Rows: Three Relation Models
The three rows in the design space correspond to three ways of
modeling a relation.

Edge The simplest way of representing a relation is through an
edge between two nodes (either directed or undirected). This is a
concise way of specifying a relation but it has the disadvantage that
the relation is not a first-class citizen (see below). Also it is not
possible to declare ternary, or higher arity, relations with edges.

2 2015/8/31

Tuple (Ordered Roles) By lifting relations to objects they be-
come first-class citizens, i.e. relations can have attributes, and rela-
tions can be the subject in other relations. A relation object modeled
as a tuple has ordered roles. The absence of role names requires the
order (or position) of the roles to be used for navigation. For bi-
nary relations this entails four predefined navigation operators. But
for higher arity relations 2n operators are required, which does not
scale.

Object (Named Roles) Giving the roles in a relation names makes
navigation understandable and makes modeling n-ary relations fea-
sible.

3.3 Detailed Description of Points in Design Space
We discuss some of the points of the design space.

Relational Tuples: RelJ The RelJ Java extension lifts relations
to tuple objects [4]. In RelJ different operators are used to disam-
biguate between different navigation operations (Figure 4). RelJ
provides no facilities for bidirectional navigation. However, that
is not a conceptual limitation. Adding two operators (:. and ::)
would allow backward navigation. While this is theoretically ex-
tensible to relations with more than two participants, it requires
adding new operators for each participant.

Relational Objects: Rumer and RelJ extension Naming roles
allows usable extension to n-ary relations. This is the model used
by Rumer [2, 3] as illustrated in Figure 5. While Rumer’s im-
plementation does not support n-ary relations, it provides the in-
gredients needed for n-ary relations: role names and first-class
citizenship. A proposed extension for RelJ [23] adds names to
roles, as illustrated in Figure 6, and is essentially equivalent
to Rumer’s syntax. As an alternative query syntax, we propose
math<-(Enrollment.course).student, which is closer to the
usual navigation syntax: from an object (math) find all relations
with that object in one of its roles (Enrollment.course), and
produce objects in the other role (student). All these notations are
rather verbose, even if more concise than full blown SQL queries.
We would prefer a more concise notation for navigating n-ary rela-
tions.

ORM Edges: Inverse Properties WebDSL [21] supports bidirec-
tional navigation without a verbose syntax for inverse lookups by
means of inverse properties [10] as illustrated in Figure 7. Explicit
names on both sides of an association simplifies navigation to just
following named references. These names have to be defined in
both the source and target class.

ORM Objects: this paper Combining the advantages of repre-
senting the relation as object and Object-Role Modeling for nam-
ing roles, we arrive at our proposal for a unified and generalized
approach to modeling relations (Figure 8). Relations are first-class
citizens: (1) relations can have attributes and (2) relations can be
the subject in other relations. In addition, relations can have any
number of roles (n-ary relations). By explicitly providing a name
for the navigation between each pair of participants in the relation
we get concise navigation expressions: (1) from relation to par-
ticipant and back (b_takes_m.student and bob.enrollments),
and (2) from participant to other participant (bob.courses) and
back (math.students). Instead of defining these names in the
source and target classes, as in WebDSL, all names are introduced
in the relation. The declaration of a role T r <- m i introduces
a role r of type T with inverse i with multiplicity m. This pro-
vides navigation from relation to participant through r and navi-
gation from participant to relation through i. A declaration r1.n1
<-> r2.n2 introduces names for navigation between participants:
r1.n1 leads to r2 and r2.n2 leads to r1. In contrast to WebDSL,

class Student { }
class Course { }
relationship Enrollment (Student, Course) {
int grade;

}
bob.Enrollment // bob’s courses
bob:Enrollment // Enrollment−type relations
bob:Enrollment.grade
b_takes_m.from // bob
b_takes_m.to // math

Figure 4. First-class citizen tuple based relations in RelJ [4]

class Student { }
class Course { }
relationship Enrollment
participants (Student student, Course course) {
int grade;

}
Enrollment.select(s_c: s_c.course==math).student;

Figure 5. First-class relations with named roles in Rumer [2, 3]

class Student { }
class Course { }
relationship Enrollment extends Relation
(Student student, Course course, Student tutor){
int grade;

}
Enrollment[course == math].student; // math studs

Figure 6. Ternary relation extension proposal for RelJ [23]

entity Student { courses : Set<Course> }
entity Course {
students :Set<Student> (inverse=Student.courses)

}
math.students // math students
bob.courses // bob’s courses

Figure 7. Inverse properties in WebDSL [21]

entity Student { }
entity Course { }
relation Enrollment {
Student student <− * enrollments
Course course <− + enrollments
student.courses <−> course.students
Int grade

}
bob.courses // bob’s courses
bob.enrollments // Enrollment−type relations
b_takes_m.student // bob

Figure 8. Relations with concise navigation (this paper)

Enrollment

student course

enrollments enrollments

courses

students
Student Course

role

inverse

shortcut

Figure 9. Schematic notation of Figure 8

3 2015/8/31

relation Enrollment { Student* Course+ }

expands to (lower case participant type, lower case relation type,
add s for * and +)

relation Enrollment {
Student student <− * enrollments
Course course <− + enrollments

}

expands to (use role name, add s for * and +)

relation Enrollment {
Student student <− * enrollments
Course course <− + enrollments
student.courses <−> course.students

}

Figure 10. Expansion of concise relation definition

entity Student {
Int? avgGrade = avg(this.enrollments.grade)

}

Figure 11. Relations language with derivation

these declarations do not introduce attributes in the participant
classes, but rather inverses and shortcuts (Figure 9). For example,
bob.courses is a shortcut for bob.enrollments.course.

4. A Relational Data Modeling Language
We have designed a language for data modeling featuring native
multiplicities, bidirectional navigation, n-ary relations, first-class
relations, and concise navigation expressions based on ‘our work’
in the design space. In this section we discuss two extensions of the
basic idea and the grammar of the language.

Concise Definition of Relations While navigation in Figure 8 is
very concise, the definition of a relation is somewhat verbose due
to the introduction of names for each of the possible navigation
steps. In many cases we can derive these names from the types of
the roles. Figure 10 illustrates how a definition with implicit names
is expanded to a definition with explicit names. This automatic
expansion can of course lead to name collisions, for example if
the participant classes have an attribute with a name introduced by
a relation. In this case the programmer has to (partially) specify
names explicitly.

Derived Attributes To express business logic in data models, we
extend entities and relations with derived attributes. The value of
a derived attribute is described in terms of the values of other
attributes and relations as illustrated in Figure 11. Thus, if one of
the underlying values changes, the derived attribute is updated.

Grammar The grammar of the relations language is given in
Figure 12. a, i, r and t are respectively attribute, inverse, role and
entity-type names. The roles, r, are the solid arrows in the design
space diagram and the inverses/shortcuts, i, are the dashed and
dotted arrows. a′, i′, r′, r′′, and t′ refer to these names. The lookup
expression (t [a == e]) is only intended to look up objects of
a certain type with a certain attribute value in the heap. It is not our
intention to provide a full-fledged query language; our focus is on
navigation expressions.

Prototype We have implemented this language on the language
workbench Spoofax [13]. The prototype is publicly available.1

1 https://github.com/metaborg/relations tag v0.2.5

Program ::= model Entity* execute e

Entity ::= entity t {Attribute* }

| relation t {Attribute* Role* Shortcut* }

Attribute ::= p m a

| p m a = e

Role ::= t
′
r <−m i

Shortcut ::= r
′
. i <−> r

′′
. i

p ∈ PrimitiveType ::= Boolean | Int | String

m ∈Multiplicity ::= ? | ! | * | +

e ∈ Expr ::= f (e) | e1 ⊕ e2 | ! e | e1 ? e2 : e3

| e . a
′ | e . i

′ | e . r
′

| true | false | literalInt | literalString

| this | t [a == e]

f ∈ AggrOp ::= min | max | avg | sum | concat | count | conj | disj

⊕ ∈ {+,−, ∗, /,%,&&, ||, >,>=, <,<=,==, ! =, <+,++}

Figure 12. The grammar of the relations language

5. Multiplicity-Safe Updates
With data model and navigation in place we can look at a language
mechanism for updating data. An update mechanism should pre-
serve the multiplicity invariants specified in the model; it should be
multiplicity-safe. In this section we will cover existing approaches
for multiplicity-safe updates and the requirements for updates in
our language.

Multiplicity-Safe Statements Java with multiplicity annotations
[20] features the Object-Oriented way of updating state: assign-
ment statements. This limits object graphs that can be constructed
while maintaining multiplicity invariants. In our example Course
has + enrollment relations. The only way to create a new course is
to pass a student in the constructor, creating a course without a stu-
dent would violate the invariant. If Student also would require +
enrollment relations neither students nor courses could be instanti-
ated. Java provides no primitive to create a single Course, a single
Student and a relation between them in an atomic step.

Alloy: Model Checking Multiplicity Invariants Alloy [11] is not
a programming language but a specification language. It does how-
ever poses a means of specifying an atomic update that does exactly
what statements cannot do: create a student, a course and a relation
between those in a single step. The mechanism for specifying up-
dates is the Z notation [19]: a relation between a pre and post state.
To check whether the invariants can be broken by updates bounded
model checking is done.

Booster: Multiplicity-Safe by Runtime Availability Booster [6]
is a language which also uses the Z notation for specifying updates.
In Booster multiplicity invariants are ensured by runtime availabil-
ity of updates: if performing an update would mean violating a con-
straint then the update operation is not available. The invariants are
ensured, but the programmer might specify updates that are avail-
able in less cases than what he expects.

Our Requirements We would like to combine the static guaran-
tees one gets with multiplicity-safe statements with the expressivity
from the Z notation. Compared to Booster we would like to move
the multiplicity checks to compile time instead of runtime. It should
still be able for updates to be unavailable at runtime (for example
trying to delete a course while there are still students enrolled), but
that unavailability should be made explicit by the programmer. The
type system should check that in all other cases the operation is
available, or give a type error.

4 2015/8/31

6. Related Work
Our work builds on research in different fields: language constructs
for relations, navigating and querying relations and multiplicities.
Specific differences with our work are highlighted per article.

Languages with first-class relations The Rumer language by
Balzer has first-class relations [2, 3]. It features first-class relations
with named roles and queries. Rumer provides reactive queries as
well as imperative code. It has cardinalities specified in constraints
and implements binary relationships. Our approach on the other
hand does not support imperative code, has multiplicities as part of
the type system and features relations of all degrees.

Classages is a language that also features relations [14]. Clas-
sages is targeted at modelling the interactions and interaction life
span between objects. It features static and dynamic relations, bidi-
rectional relations and multiplicities. Our approach has in common
that it has bidirectional relations but we are focused on modeling
data instead of interactions.

Pearce and Noble extended Java with first-class relationships
using aspects [17]. Relations are modeled as external tuples and
objects are agnostic to relations they are in. Their approach to be-
havioural changes of objects based on their relations should be im-
plemented by aspects, externally. Our approach is the opposite, en-
tities know what relations they participate in. This allows specify-
ing relation dependent behaviour in derivations.

RelJ is first-class relationship extension to Java by Biermann
and Wren [4, 23]. In their approach they support relationships
as first-class citizens. The relations are also modeled as tuples,
where the roles have a position in the tuple but no name. In our
approach the roles are named and unordered; allowing navigation
based on roles. Their relations are binary and one-directional. In the
technical report they also sketch an extension with named roles [4].
In this sketched extension relations can have any arity and support
bidirectional navigation.

Nelson implemented first-class relationships in Java [16]. This
is a library and not a language extension. Mutable sets of tuples are
used as first-class constructs to model relations. Without specific
language constructs it does not supply additional semantics for
relations and thus cannot provide additional static checking.

Languages with non first-class relations In 1987 Rumbaugh was
the first to add relations to a language [18]. His approach is pre-
processor based and dynamic. It does not have relations as first-
class citizens.

In 1991 a relationship mechanism for a Strongly Typed Object-
Oriented Database Programming language introduced statically
typed relations as part of a language [1]. The paper explains the
data model definition and transactions. It does however not explain
in detail how querying or navigation is done.

WebDSL introduced inverse properties which inspired the in-
verses [21]. Refer to Section 3 for details.

Queries of relations in Object-Oriented languages The Java
Query Language (JQL) adds queries to Java [22]. There is no ad-
ditional support for relations, so navigation uses value-based joins
like in SQL. LINQ also uses value-based joins [15]. These ap-
proaches are in the left column of the design space (Section 3). In
contrast, our navigation is based on the role names of relations.

Multiplicities in programming languages In Content over Con-
tainer: Object-Oriented Programming with multiplcities Steimann
adds multiplicity annotations to Java in order to remove the Collec-
tion containers [20]. Refer to Section 2 for details.

Finally the ideas for this paper were presented in the ACM
Student Research Competition [8]. The design space analysis and
formal semantics of the language are new to this paper. Also the
syntax changed as a result of the design-space analysis.

7. Conclusion
Unification and generalization of relations led to a new data mod-
eling and navigation language. This goes hand in hand with native
multiplicities. Both the relations aspect and the native multiplici-
ties aspect lead to more a more concise definition and navigation of
relationships; removing maintenance of reference consistency, re-
moving collection classes and providing single identifier navigation
by inverses and shortcuts.

References
[1] Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a

strongly typed object-oriented database programming language. In:
VLDB. pp. 565–575 (1991)

[2] Balzer, S.: Rumer: a Programming Language and Modular Verification
Technique Based on Relationships. Ph.D. thesis, ETH, Zürich (2011)

[3] Balzer, S., Gross, T.R., Eugster, P.: A relational model of object col-
laborations and its use in reasoning about relationships. In: ECOOP.
pp. 323–346 (2007)

[4] Bierman, G.M., Wren, A.: First-class relationships in an object-
oriented language. In: ECOOP. pp. 262–286 (2005)

[5] Chen, P.P.: The entity-relationship model - toward a unified view of
data. tods 1(1), 9–36 (1976)

[6] Davies, J., Welch, J., Cavarra, A., Crichton, E.: On the generation of
object databases using booster. In: ICECCS. pp. 10–pp. IEEE (2006)

[7] Halpin, T.: Object-role modeling (orm/niam). In: Handbook on archi-
tectures of information systems, pp. 81–103. Springer (2006)

[8] Harkes, D.: Relations: a first class relationship and first class deriva-
tions programming language. In: AOSD. pp. 9–10 (2014)

[9] Harkes, D., Visser, E.: Unifying and generalizing relations in role-
based data modeling and navigation. In: SLE. pp. 241–260 (2014)

[10] Hemel, Z., Groenewegen, D.M., Kats, L.C.L., Visser, E.: Static con-
sistency checking of web applications with WebDSL. JSC 46(2), 150–
182 (2011)

[11] Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Transactions on Software Engineering and Methodology (TOSEM)
11(2), 256–290 (2002)

[12] Jacobson, I., Booch, G., Rumbaugh, J.E.: The unified software de-
velopment process - the complete guide to the unified process from
the original designers. Addison-Wesley object technology series,
Addison-Wesley (1999)

[13] Kats, L.C.L., Visser, E.: The Spoofax language workbench: rules for
declarative specification of languages and IDEs. In: OOPSLA. pp.
444–463 (2010)

[14] Liu, Y.D., Smith, S.F.: Interaction-based programming with classages.
In: OOPSLA. pp. 191–209 (2005)

[15] Meijer, E., Beckman, B., Bierman, G.M.: Linq: reconciling object,
relations and xml in the .net framework. In: sigmod. p. 706 (2006)

[16] Nelson, S., Noble, J., Pearce, D.J.: Implementing first-class relation-
ships in java. Proceedings of RAOOL 8 (2008)

[17] Pearce, D.J., Noble, J.: Relationship aspects. In: AOSD. pp. 75–86
(2006)

[18] Rumbaugh, J.E.: Relations as semantic constructs in an object-
oriented language. In: OOPSLA. pp. 466–481 (1987)

[19] Spivey, J.M., Abrial, J.: The Z notation. Prentice Hall Hemel Hemp-
stead (1992)

[20] Steimann, F.: Content over container: object-oriented programming
with multiplicities. In: OOPSLA. pp. 173–186 (2013)

[21] Visser, E.: WebDSL: A case study in domain-specific language engi-
neering. In: GTTSE. pp. 291–373 (2007)

[22] Willis, D., Pearce, D.J., Noble, J.: Efficient object querying for java.
In: ECOOP. pp. 28–49 (2006)

[23] Wren, A.: Relationships for object-oriented programming languages.
University of Cambridge, Computer Laboratory, Technical Report
702(UCAM-CL-TR-702) (November 2007)

5 2015/8/31

