We Should Stop Claiming Generality in Our
Domain-Specific Language Papers

(Extended Abstract)”

Daco C. Harkes
Delft University of Technology
The Netherlands
d.c.harkes@tudelft.nl

Abstract

Our community believes that new domain-specific languages
should be as general as possible to increase their impact.
However, I argue that we should stop claiming generality
for new domain-specific languages. Instead, we should doc-
ument how domain-specific language based software devel-
opment is beneficial to the overall software development
process.

CCS Concepts -« Software and its engineering — Do-
main specific languages; Software development methods; «
General and reference — General literature;

Keywords Domain-specific languages, domain-specific lan-
guage engineering, scientific rhetoric

ACM Reference Format:

Daco C. Harkes. 2018. We Should Stop Claiming Generality in Our
Domain-Specific Language Papers (Extended Abstract). In Proceed-
ings of the 2018 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! °18), November 7-8, 2018, Boston, MA, USA. ACM, New
York, NY, USA, 2 pages. https://doi.org/10.1145/3276954.3276967

1 Introduction

In our community, scientific arguments for new domain-
specific languages (DSLs) usually include an argument for
generality, despite advice to not over-generalize [4]. More-
over, generality is also a criterion for accepting DSL papers.
My goal, with the essay published in The Art, Science, and
Engineering of Programming [2], is to argue against this cri-
terion, because DSLs can be very useful without generality.

“The full version of this essay is available in The Art, Science, and Engineer-
ing of Programming [2]

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

Onward! ’18, November 7-8, 2018, Boston, MA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6031-9/18/11.
https://doi.org/10.1145/3276954.3276967

131

More general DSLs can actually be less useful. Less gen-
eral DSLs which are useful, might not be generalizable at
all. The generality criterion often leads to weak claims of
generality in research papers, which are undone by later
work. Moreover, these claims leave an impression that work
can solve everything. This is harmful for newcomers to our
field and dissemination of knowledge to industry, because
it makes it hard to assess whether a DSL is applicable to a
specific problem.

From a theoretical point of view, there is a trade-off be-
tween more specific and more general DSLs. More specific
DSLs cannot express as many programs, but the programs
contain less boiler-plate code. This is because the more spe-
cific DSL makes assumptions which programs cannot work
around. The same assumptions need to be made explicit in
the more general DSL program, creating boiler-plate code.

In practice this trade-off between scrap-your-boilerplate
and generality tends to favor the former. DSLs are not de-
signed to be general because most DSLs are developed in
tandem with the programs written in them. This is true for
scientific literature as well as for the projects using DSLs
in academia and industry. In scientific literature, the run-
ning example is usually the one piece of software that the
researcher wanted to create. Creating a better DSL was the
way to do it. Also in industry DSLs are co-developed with
their applications. Often new DSL features are added when
they are needed for a client application.

If DSLs are co-developed with applications, we as a re-
search community should support and research that process.
Extensible languages are one way to cater for co-develop-
ment of language and application. Another way is reducing
the development effort of DSLs in general by creating lan-
guage workbenches [1]. In order to further streamline co-
development, these language workbenches should provide
live programming of DSL and applications [3].

But more importantly, we need a shift in our scientific
rhetoric. We should stop claiming generality, and as review-
ers we should stop judging based on generality. Instead, we
should start claiming co-development is beneficial, and as
reviewers we should start judging DSLs on benefit in the
software engineering process. We can judge the benefit of
DSLs by doing and reporting case studies. Second, if DSL


https://doi.org/10.1145/3276954.3276967
https://doi.org/10.1145/3276954.3276967

Onward! ’18, November 7-8, 2018, Boston, MA, USA

authors write papers with an emphasis on language design
instead of benefit to the overall software engineering pro-
cess, then reviewers should reward authors for being explicit
about the limits to the applicability of their DSLs.

References

[1] Martin Fowler. 2005. Language Workbenches: The Killer-App for
Domain Specific Languages? http://www.martinfowler.com/articles/
languageWorkbench.html. Accessed: 2018-08-08.

132

Daco C. Harkes

[2] Daco C. Harkes. 2018. We should Stop Claiming Generality in our

[3

[4

=

fan)

Domain-Specific Language Papers. The Art, Science, and Engineering of
Programming (2018).

Gabriél Konat, Michael J. Steindorfer, Sebastian Erdweg, and Eelco Vis-
ser. 2018. PIE: A Domain-Specific Language for Interactive Software De-
velopment Pipelines. The Art, Science, and Engineering of Programming
2,3(2018). https://doi.org/10.22152/programming-journal.org/2018/2/9
Marjan Mernik, Jan Heering, and Anthony M. Sloane. 2005. When
and how to develop domain-specific languages. Comput. Surveys 37, 4
(2005), 316-344. https://doi.org/10.1145/1118890.1118892


http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.22152/programming-journal.org/2018/2/9
https://doi.org/10.1145/1118890.1118892

	Abstract
	1 Introduction
	References

