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Abstract

Our community believes that new domain-specific languages
should be as general as possible to increase their impact.
However, I argue that we should stop claiming generality
for new domain-specific languages. Instead, we should doc-
ument how domain-specific language based software devel-
opment is beneficial to the overall software development
process.
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1 Introduction

In our community, scientific arguments for new domain-
specific languages (DSLs) usually include an argument for
generality, despite advice to not over-generalize [4]. More-
over, generality is also a criterion for accepting DSL papers.
My goal, with the essay published in The Art, Science, and
Engineering of Programming [2], is to argue against this cri-
terion, because DSLs can be very useful without generality.

“The full version of this essay is available in The Art, Science, and Engineer-
ing of Programming [2]
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More general DSLs can actually be less useful. Less gen-
eral DSLs which are useful, might not be generalizable at
all. The generality criterion often leads to weak claims of
generality in research papers, which are undone by later
work. Moreover, these claims leave an impression that work
can solve everything. This is harmful for newcomers to our
field and dissemination of knowledge to industry, because
it makes it hard to assess whether a DSL is applicable to a
specific problem.

From a theoretical point of view, there is a trade-off be-
tween more specific and more general DSLs. More specific
DSLs cannot express as many programs, but the programs
contain less boiler-plate code. This is because the more spe-
cific DSL makes assumptions which programs cannot work
around. The same assumptions need to be made explicit in
the more general DSL program, creating boiler-plate code.

In practice this trade-off between scrap-your-boilerplate
and generality tends to favor the former. DSLs are not de-
signed to be general because most DSLs are developed in
tandem with the programs written in them. This is true for
scientific literature as well as for the projects using DSLs
in academia and industry. In scientific literature, the run-
ning example is usually the one piece of software that the
researcher wanted to create. Creating a better DSL was the
way to do it. Also in industry DSLs are co-developed with
their applications. Often new DSL features are added when
they are needed for a client application.

If DSLs are co-developed with applications, we as a re-
search community should support and research that process.
Extensible languages are one way to cater for co-develop-
ment of language and application. Another way is reducing
the development effort of DSLs in general by creating lan-
guage workbenches [1]. In order to further streamline co-
development, these language workbenches should provide
live programming of DSL and applications [3].

But more importantly, we need a shift in our scientific
rhetoric. We should stop claiming generality, and as review-
ers we should stop judging based on generality. Instead, we
should start claiming co-development is beneficial, and as
reviewers we should start judging DSLs on benefit in the
software engineering process. We can judge the benefit of
DSLs by doing and reporting case studies. Second, if DSL
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authors write papers with an emphasis on language design
instead of benefit to the overall software engineering pro-
cess, then reviewers should reward authors for being explicit
about the limits to the applicability of their DSLs.
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