
Base Value Attribute

Bidirectional Relation

Derived Value Attribute

Derived Value
Bidirectional Relation

Harkes, D. C., van Chastelet, E., Visser, E. Migrating Business Logic to an Incremental Computing DSL: A Case Study. SLE (2018)
Harkes, D. C., Visser, E.: IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition. ECOOP (2017)
Harkes, D. C., Groenewegen, D. M., Visser, E.: IceDust: Incremental and Eventual Computation of Derived Values in Persistent Object Graphs. ECOOP (2016)
Harkes, D. C., Visser, E.: Unifying and Generalizing Relations in Role-Based Data Modeling and Navigation. SLE (2014)

Impl. Vanilla IceDust
Threads 0 1 0 2 4 6 8 10 12 14 16

Action Unit Course
read req/sec Small 136.04 - 129.65 112.53 109.58 103.11 92.68 84.39 74.66 67.29 61.18
submission Medium 152.95 - 145.04 125.37 119.33 112.02 104.82 93.88 88.26 80.14 71.66

Large 132.45 - 119.62 141.99 130.21 115.44 105.22 97.49 96.07 95.98 96.19
edit req/sec Small 31.06 - 120.49 115.52 115.42 114.88 114.48 114.18 114.18 113.55 113.25
submission Medium 111.91 - 96.13 90.92 87.08 82.02 69.74 64.73 62.30 63.18 58.96

Large 104.17 - 107.84 103.64 96.30 89.56 80.08 75.68 71.30 66.63 62.63
create req/sec Small 100.72 - 67.70 64.39 61.95 60.58 57.31 54.49 51.91 48.94 46.85
submission Medium 137.07 - 67.91 64.45 65.55 62.12 58.37 58.17 55.65 55.80 49.03

Large 139.34 - 35.93 35.73 34.02 33.58 32.52 31.73 31.40 29.47 28.79
edit req/sec Small - - - 117.45 114.38 113.85 113.31 112.85 112.41 111.61 113.68
submission Medium - - - 6.59 11.29 16.49 20.93 23.95 26.75 29.15 30.72
(live stats) Large - - - 6.12 12.47 16.62 19.69 20.86 21.68 25.3 24.66
create req/sec Small - - - 9.02 15.73 20.56 22.86 24.92 26.85 27.83 29.30
submission Medium - - - 4.49 8.31 11.26 13.40 14.82 15.77 16.45 17.30
(live stats) Large - - - 3.60 6.26 8.29 9.54 10.54 11.81 12.35 12.68
change sec/ Small - 303 - 195 110 78 64 56 51 48 47
deadline 10 reqs Medium - 571 - 252 140 106 79 68 62 59 57

Large - 2324 - 408 232 172 143 128 120 117 102
change sec/ Small - 1220 - 21 15 14 12 12 11 11 12
checklist w. 100 reqs Large - 19130 - 123 71 55 46 41 39 41 45
recalculate sec/req Small - 49 - 147 76 53 42 36 32 30 28
course Medium - 1718 - 1557 795 549 434 373 333 318 302

Large - 18494 - 12624 6833 5078 4365 4049 3821 3797 3748

entity	Assignment	{
		name					:	String	

		question	:	String?

		deadline	:	Datetime?

		minimum		:	Float

		avgGrade	:	Float?				=	avg(submissions.grade)
		passPerc	:	Float?				=	count(submissions.filter(x=>x.pass)	/	count(submissions)
}

entity	Student	{
		name					:	String

}

entity	Submission	{
		name					:	String				=	assignment.name	+	"	"	+	student.name
		answer			:	String?

		deadline	:	Datetime?	=	assignment.deadline	<+	parent.deadline						(default)
		finished	:	Datetime?

		onTime			:	Boolean			=	finished	<=	deadline	<+	true

		grade				:	Float?				=	if(conj(children.pass))	avg(children.grade)	(default)
		pass					:	Boolean			=	grade	>=	assignment.minimum	&&	onTime	<+	false
}

relation	Submission.student				1	<->	*	Student.submissions
relation	Submission.assignment	1	<->	*	Assignment.submissions
relation	Assignment.parent					?	<->	*	Assignment.children

relation	Submission.parent					?	=	
		assignment.parent.submissions.find(x	=>	x.student	==	student)
																																	<->	*	Submission.children

Simplified WebLab Data Model

Simplified WebLab Data

Migrating to an Incremental Computing DSL
Daco C. Harkes, Elmer van Chastelet, and Eelco Visser

Delft University of Technology, The Netherlands
{d.c.harkes, e.vanchastelet, e.visser}@tudelft.nl

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
deadline = 13-1-’17
avgGrade = …
passPerc = …

exam : Assign
name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

examAlice : Sub
name = …
answer = “Good”
deadline = …
finished = 7-1-’17
onTime = …
grade = 7.0
pass = …

labAlice : Sub
name = …
answer = “Great”
deadline = …
finished = 3-1-’17
onTime = …
grade = 8.0
pass = …

labBob : Sub
name = …
answer = “Perfect”
deadline = …
finished = 28-1-’17
onTime = …
grade = 10.0
pass = …

examBob : Sub
name = …
answer = “Bad”
deadline = …
finished=7-1-’17
onTime = …
grade = 3.0
pass = …

Calculation Strategies

w rcalc

w calc r

w
calc

r

on-demand calculation

incremental calculation

eventual calculation

HTTP request
HTTP response
flag dirty

w write to base value 
ar read derived value 
acalc calc. derived val.

Problem
Information systems filter and process data to create new data: derived 
data. Derived data should be updated as base data is updated, and this 
should happen fast.

However, realizing a high performance implementation typically requires 
invasive changes to the business logic in the form of cache and cache 
invalidation code. Unfortunately, this obfuscates the original intent of the 
business logic in an abundance of caching patterns. These patterns make 
it is less straightforward to validate that a program ‘does the right thing’.

IceDust 2 provides three strategies for calculating the derived values: on-
demand, incremental and eventual. The distinction between these 
strategies is when derived values are calculated:

Benchmarks

Approach

children

children children

submissions submissions

A case study of migrating WebLab’s business logic to IceDust

WebLab Server Architecture

The math course consists of a lab 
and an exam. The minimum to pass 
the course is a 6, but for the lab and 
exam a 5 suffices. The deadline for 
the course is January 13th, 2017.

Alice passes the course, her grades are 
sufficient, and the lab is handed in on 
time. Bob’s exam grade is insufficient. 
Bob’s lab is late, but he received a 
personal deadline for the course.

Note that the parent-children relation 
for submissions is derived. And that 
deadlines recursively flow down the 
submission-tree while grades get 
recursively averaged up the tree.

object

reference
derived reference
bidirectional relation (2 references) 

mathBob : Sub
name = …
deadline=1-2-’17
grade = …
pass = …

mathAlice : Sub
name = …
deadline = …
grade = …
pass = …

Incremental computing DSLs aim to address this tension between 
performance and validatability by automatically incrementalizing non-
incremental specifications.

To provide empirical evidence to what extent migration of business logic 
to an ICL is useful, we report on a case study on a learning management 
information system: we migrated WebLab to IceDust.

Results
Validatability: improved

• Derived values, as a single source of computation, give developers 
confidence that they understand what the business logic means.

• During performance engineering developers can reason about the 
system based on calculation strategies, without worrying about 
inconsistencies.

Performance: drastically improved / slightly regressed

• The WebLab implementation in IceDust enables live statistics, which 
was infeasible manually.

• WebLab-IceDust performs similar or better compared to WebLab-
vanilla, except for object creation.

Effort: no effort reduction

• The effort for additional business logic is significantly lower in the ICL, 
but the total effort is not reduced.

• While IceDust does not lead to an overall effort reduction or increase, it 
does increase separation of concerns.

Database (MySQL)

Transaction

Transaction

Web Server (Tomcat)

Request Handler

Object ModelClient

Client

HTTP
request

response

Object-
relational-
mapper

(Hibernate)

Scheduled tasks

Object Model

Object Model

Transaction

Transaction

Request Handler

Object Model

AC (WebDSL)

Model

UI (WebDSL)

Data Model
(WebDSL)

Pages / 
Templates ActionAccess Control 

Rules

OO GPL (WebDSL)

Methods Global 
Functions

Request 
Variables

Session 
Variables

Data Model / 
Derived Values 

(IceDust)

WebLab Code Architecture
WebLab uses a standard stateless architecture for web servers. HTTP 
requests are serviced in isolation by a request handler. A request 
handler loads (saves) the data from (to) the database by means of an 
object-relational mapper. Request handlers interact concurrently with 
the database through transactions. The scheduled task executor 
handles periodic or asynchronous tasks.

In WebLab-IceDust we migrated the data model 
partially from WebDSL to IceDust. Moreover, we 
migrated the calculation of derived values from 
object-oriented GPL code (methods and global 
functions) to IceDust derived value expressions. 
Finally, we refactored the rest of the code to use 
these derived values rather than the GPL methods.

Our first benchmarks are maximum system throughput under concurrent 
student actions. We show the average requests per second over 30 second 
runs, higher is better. More IceDust threads decrease performance, as less 
processing power is available for requests. Vanilla calculation cannot run 
concurrently with load, hence no measurements for one thread.

The next two benchmarks are the system throughput under which live 
statistics can be maintained by IceDust. More IceDust threads increase 
performance, as derived values are calculated faster.

The last three benchmarks are heavyweight teacher and administrative 
actions. For these we measure time to completion in seconds, lower is 
better. More IceDust threads increase performance, as derived values are 
calculated faster.


